6,558 research outputs found

    The plastic limit of clays

    Get PDF

    Crystallization of a Mos1 transposase-inverted-repeat DNA complex: biochemical and preliminary crystallographic analyses

    Get PDF
    A complex formed between Mos1 transposase and its inverted-repeat DNA has been crystallized. The crystals diffract to 3.25 Å resolution and exhibit monoclinic (P2(1)) symmetry, with unit-cell parameters a = 120.8, b = 85.1, c = 131.6 Å, β = 99.3°. The X-ray diffraction data display noncrystallographic twofold symmetry and characteristic dsDNA diffraction at ∼3.3 Å. Biochemical analyses confirmed the presence of DNA and full-length protein in the crystals. The relationship between the axis of noncrystallographic symmetry, the unit-cell axes and the DNA diffraction pattern are discussed. The data are consistent with the previously proposed model of the paired-ends complex containing a dimer of the transposase

    A novel topology of high-speed SRM for high-performance traction applications

    Get PDF
    A novel topology of high-speed Switched Reluctance Machine (SRM) for high-performance traction applications is presented in this article. The target application, a Hybrid Electric Vehicle (HEV) in the sport segment poses very demanding specifications on the power and torque density of the electric traction machine. After evaluating multiple alternatives, the topology proposed is a 2-phase axial flux machine featuring both segmented twin rotors and a segmented stator core. Electromagnetic, thermal and mechanical models of the proposed topology are developed and subsequently integrated in an overall optimisation algorithm in order to find the optimal geometry for the application. Special focus is laid on the thermal management of the machine, due to the tough thermal conditions resulting from the high frequency, high current and highly saturated operation. Some experimental results are also included in order to validate the modelling and simulation results

    Growing wheat to maturity in reduced gas pressures

    Get PDF
    The main objective of this project was to determine assimilation of CO2 and efficiency of water use in wheat grown to maturity in a low pressure total gas pressure environment. A functional test of the low pressure plant growth chamber system was accomplished in February and March of 1993 wherein this objective was partially achieved. Plants were grown to maturity in the chambers. Data were actively collected during the first 29 days. The plants were allowed to maintain themselves at the CO2 compensation point until day 45 of the study at which point active atmospheric regulation was resumed. This provided data at the vegetative and reproductive stages of the life cycle of the plants. However, this information may not be representative of the performance of the plants due to the loss of low pressure on a number of days during the study, which affected the plants by changing the pressure potential of the tissues. The performance of the system will be discussed on a component by component basis. The maintenance of the plants at the CO2 compensation point was driven by the failure of the computer program operating the system. The software problems that arose during the functional test have since been corrected. Results from the functional test also indicated that the plants were not receiving adequate light and nutrients. The growth chambers have been relocated and the growth room modified to compensate for these deficiencies

    Signaling from blood vessels to CNS axons through nitric oxide

    Get PDF
    Brain function is usually perceived as being performed by neurons with the support of glial cells, the network of blood vessels situated nearby serving simply to provide nutrient and to dispose of metabolic waste. Revising this view, we find from experiments on a rodent central white matter tract (the optic nerve) in vitro that microvascular endothelial cells signal persistently to axons using nitric oxide (NO) derived from the endothelial NO synthase (eNOS). The endogenous NO acts to stimulate guanylyl cyclase-coupled NO receptors in the axons, leading to a raised cGMP level which then causes membrane depolarization, apparently by directly engaging hyperpolarization-activated cyclic nucleotide-gated ion channels. The tonic depolarization and associated endogenous NO-dependent cGMP generation was absent in optic nerves from mice lacking eNOS, although such nerves responded to exogenous NO, with raised cGMP generation in the axons and associated depolarization. In addition to the tonic activity, exposure of optic nerves to bradykinin, a classical stimulator of eNOS in endothelial cells, elicited reversible NO- and cGMP-dependent depolarization through activation of bradykinin B-2 receptors, to which eNOS is physically complexed. No contribution of other NO synthase isoforms to either the action of bradykinin or the continuous ambient NO level could be detected. The results suggest that microvascular endothelial cells participate in signal processing in the brain and can do so by generating both tonic and phasic NO signals
    corecore